Skip to content

U2Net

Image title

Query image and prediction

BiWAKO.U2Net

Salient object segmentation model.

Attributes:

Name Type Description
IS onnxruntime.InferenceSession

Inference session.

input_name str

Input node name.

output_name str

Output node name.

input_size int

Input size. Set to 320.

mean List[float]

Mean. Set to [0.485, 0.456, 0.406].

std List[float]

Standard deviation. Set to [0.229, 0.224, 0.225].

__init__(self, model='mobile') special

U2Net Inference class.

Parameters:

Name Type Description Default
model str

Model name or downloaded onnx file. Accept one of ["basic", "mobile", "human_seg", "portrait"]. If model has not been downloaded, it will be downloaded automatically.

'mobile'

predict(self, image)

Return the predicted mask of the image.

Parameters:

Name Type Description Default
image Union[str, np.ndarray]

Image in cv2 format or path to image.

required

Returns:

Type Description
np.ndarray

Predicted mask in cv2 format.

render(self, prediction, image)

Apply the predicted mask to the original image.

Parameters:

Name Type Description Default
prediction np.ndarray

Predicted mask in cv2 format.

required
image Union[str, np.ndarray]

Image in cv2 format or path to image.

required

Returns:

Type Description
np.ndarray

Rendered original image in cv2 format.